
Mathematics: realisation of tasks
by Laurent Cancé Francis (29.11.2006)

I. Definitions.

Def:
Let ADt={ a of A / it exists x of P so that x(a)=1 }
A = { action(s) }
P = { person(s) }
ADt is the task during Dt.

Def:
{ ati / i of N } is the numerotation of actions
corresponding to the task ADt.

Prop:
For all x of P taht have task ADt, it exists y of PBDt
so that it exists C of L function of «coding» of
actions so that C(BDt') = ADt.

Let:
C(BDt') <= ({pi} of y) = T ({pj} of x) => ADt

T: function of correspondances / translation.

Def:
Let x of P that has task ADt, it exists PDt of T,
relatives thoughts during Dt.

Def:
Let the triple of realisation of a task (x, ADt, P)
defined this way.

Def:
Let (x, ADt, P) defined.
So P = Pu U Ps so that:
– for all p of Pu, (x, ADt, P-{p}) isn't defined.
– for all p of Ps, (x, ADt, P-{p}) is defined.
Ps thoughts not usefull during the task.

Def:
Let (x, ADt, P) defined.
P = Pu U Ps.
We define the function of transport fPg that leads to
Ps during the task ADt.

Prop:
Let (x, ADt, P) defined.
P = Pu U Ps.
For all b of Ps, it exists a of A, a not of ADt, p of P
et fPg so that fPg(a,p)=b

Def:
Let a of ADt, t(a) of Dt=[t1..t2].
The anteriority of action of a compared to b is
defined this way : t(a)<t(b)

II. Optimisation of (x, ADt, P) .
Def:
Let (x, ADt, P) defined.
It exists p of P so that (x, ADt, P), fPg(p) of P so
that (x, ADt, P-{p}) do not be defined, so p is
essential to the realisation of ADt.
Thinking of invention or of creation.

Def:
Let (x, ADt, P) defined.
P = Pu U Ps.
p of P is an action thought if fPg(p) => ADt.
p of P is a creation thought if fPg(p)=Pu.

Prop:
Let Pc et Pa a set of thoughts of creation and of
action of (x, ADt, P) defined, so:
(x, ADt, P') is a triple of realisation optimised of
(x, ADt, P) by Pa' if : n(Pa) < n(Pa')
and P = Pa U Pc et P = Pa' U Pc.

(n(Pa) number of thoughts leading to Pa)

III. Algorithmics of invention.
Def:
Let (x, ADt, P1) defined.
If it exists p of Enum(P1,P2') of P2 so that (x, BDt',
P2) and fP2g(p) of P2 so that (x, BDt, P2-{p}) is not
defined with P2 containing P2', so (x, BDt', P2) is
an invention.

